Муниципальное бюджетное общеобразовательное учреждение «Краснощёковская средняя общеобразовательная школа N 1» Краснощёковского района Алтайского края

«Принято» на заседании МО Протокол № _ 1_ от «19» 08 2021 «Согласовано»

ирактора на VDD Пут

Заместитель директора по УВР

См Шишива СЛ

Директор МБОУ

«Утверждаю»

директор кысля «Краснотёковская СОШ №1»

__/М.П.Мозговая

Приказ № от 2021

РАБОЧАЯ ПРОГРАММА

Элективного курса «Решение физических задач» 8 класс основного общего образования Срок реализации программы 2021 – 2022 учебный год

Разработчик: Савельев Артем Игоревич учитель физики и информатики Верх - Камышенской СОШ

с.Верх - Камышенка

Пояснительная записка

Решение физических задач – один из основных методов обучения физике. С помощью решения задач сообщаются знания о конкретных объектах и явлениях, создаются и решаются проблемные ситуации, сообщаются знания из истории науки и техники,

Актуальность курса -

формирование практических и интеллектуальных компетентностей, формирование таких качества личности, как целеустремленность, настойчивость, аккуратность, внимательность, дисциплинированность; развитие эстетических чувств, формирование творческих компетентностей.

Основной задачей

курса является углубление и развитие познавательного интереса учащихся к физике. В современном мире на каждом рабочем месте необходимы умения ставить и решать задачи науки, техники, жизни. Поэтому важнейшей целью физического образования является формирование умений работать со школьной учебной физической задачей. Последовательно это можно сделать в рамках предлагаемой программы, целями которой являются: развитие интереса к физике, к решению физических задач;

- совершенствование полученных в основном курсе знаний и умений;
- формирование представлений о постановке, классификации, приёмах и методах решения школьных физических задач;

Итогом работы

по данной программе может служить реализация поставленных целей и задач, т.е. учащиеся совершенствуют знания, полученные из курса физики, приобретают навыки по классификации задач, правильной постановке, а так же приёмам и методам их решения. В качестве подведения итогов успешности обучения можно предложить соревнование по решению задач между учащимися, как по отдельным темам, так и по итогам года или провести зачёт по умению решать задачи. Для наиболее успешных детей можно объявить конкурс по составлению и решению конструкторских задач.

Программа рассчитана для учащихся 8 класса на один год обучения: 17 часов.

Содержание

Программа согласована с содержанием основного курса физики. Она ориентирует учителя не только на дальнейшее совершенствование уже усвоенных знаний и умений, а на формирование углубленных знаний и умений. Для этого вся программа делится на несколько разделов. Первый раздел носит в значительной степени теоретический характер, здесь школьники знакомятся с минимальными сведениями о понятии "задача", осознают значение задач в жизни, науке, знакомятся с различными сторонами работы с задачами.

Учебно-тематический план

1. Молекулы (3 ч)

Определение размеров, числа молекул в единице объёма тела. Капиллярные явления.

Демонстрации:

1. фотографии молекулярных кристаллов.

- 2. Диффузия жидкостей в сообщающихся сосудах.
- 3. Растекание масла по поверхности воды.
- 4. Смачивание и капиллярность в природе.

Практические задачи:

- 1. Определение размеров частиц эмульсии методом рядов.
- 2. Вычисление среднего диаметра капилляров в теле.

2. Тепловое расширение тел. Теплопередача. (4 ч)

Тепловое расширение твёрдых, жидких и газообразных тел. Термометры. Особенности теплового расширения воды, их значение в природе. Теплопередача и теплоизоляция.

Демонстрации:

- 1. Расширение тел при нагревании.
- 2. Термометры разных видов.
- 3. Теплопроводность разных тел.

Практические задачи:

- 1. Исследование теплопроводности тел.
- 2. Вычисление изменения внутренней энергии тела при совершении работы.

3. Электрический ток. (4 ч)

Электрический ток в растворах электролитов. Электролиз, использование его в технике. Электрические явления в атмосфере. Электризация пылинок и загрязнение воздуха. ГЭС.

Демонстрации:

- 1. Электролиз раствора медного купороса.
- 2. Дуговой разряд.
- 3. Модель молниеотвода.

Практические задачи:

- 1. Расчет сопротивления электрической цепи при разных видах соединений.
- 2. Расчёт сопротивления человеческого тела.
- 3. Наблюдение зависимости сопротивления проводника от температуры.

4. Электромагнитные явления. (1 ч)

Устройство электроизмерительных приборов. Применение электромагнитного реле. Изменение в электромагнитном поле Земли. Магнитные бури.

Демонстрации:

1. Устройство и принцип работы амперметра и вольтметра.

Практические задачи:

1. Определение стоимости израсходованной электроэнергии по мощности потребителя и по счётчику.

5. Световые явления. (4 ч)

Скорость света в различных средах. Элементы фотометрии. Законы распространения света. Формула тонкой линзы.

Практические задачи:

- 1. Изготовление перископа.
- 2. Глаз как оптический прибор.
- 3. Определение фокусного расстояния и оптической силы рассеивающей линзы.

8. Итоговое занятие. (1 ч)

Методическое обеспечение

При работе по данной программе учитель использует разнообразные приемы и методы: рассказ и беседа учителя, демонстрационный эксперимент, позволяющий шире осветить теоретический материал по тому или иному разделу физики. Для активизации учащихся используются:

- выступления школьников,
- подробное объяснение примеров решения задач,
- коллективная постановка экспериментальных задач,
- индивидуальная и коллективная работа по составлению задач,
- конкурс на составление лучшей задачи.

При подборе задач необходимо использовать задачи разнообразных видов, в том числе и экспериментальных, поэтому программой предусмотрено выполнение лабораторных работ. Основным при этом является развитие интереса учащихся к решению задач, формирование познавательной деятельности через решение задач. В итоге школьники должны уметь классифицировать предложенную задачу, составлять простейшие задачи, последовательно выполнять и комментировать этапы решения задач средней сложности.

Тематическое планирование

Тема занятия	наглядность	Вид
		занятия
1. Определение размеров, числа	фотографии молекулярных	Лекция и
молекул в единице объёма тела.	кристаллов.	практика
2. Определение размеров частиц	Растекание масла по поверхности	практика
эмульсии методом рядов.	воды.	
3. Вычисление среднего диаметра	Смачивание и капиллярность в	практика
капилляров в теле.	природе.	
4. Капиллярные явления	Явления смачивания и капиллярности.	практика
5. Тепловое расширение твёрдых,	Расширение тел при нагревании.	Лекция и
жидких и газообразных тел		практика
6. Решение задач на уравнение	Изгибание биметаллической пластины	практика
теплового баланса.	при нагревании. Простейший	
	терморегулятор.	

	Термометры разных видов.	
7. Исследование теплопроводности	Теплопроводность разных тел.	Лекция и
тел.		практика
8. Вычисление изменения внутренней	Калориметр, твёрдое тело, термометр.	практика
энергии тела при совершении работы		
9. Решение комбинированных задач		практика
на тепловые процессы.		
10. Влажность воздуха, определение	Конденсация паров воды при	Лекция и
точки росы.	охлаждении. Выпадение росы.	практика
11. Электрический ток в разных	Электролиз раствора медного	Лекция
средах	купороса. Дуговой разряд.	
	Модель молниеотвода.	
12. Расчет сопротивления	Приборная доска	практика
электрической цепи при разных		
видах соединений.		
14. Наблюдение зависимости	Терморезистор.	практика
сопротивления проводника от		
температуры.		
15. Законы отражения и	Изготовление перископа. Глаз как	Лекция и
преломления.	оптический прибор.	практика
16. Определение фокусного	Рассеивающие линзы, линейка.	практика
расстояния и оптической силы		
рассеивающей линзы.		
17. Итоговое занятие, подготовка к		
конференции.		

Литература для учителя:

- 1. Балаш В.А. Задачи по физике и методы их решения. М.: Просвещение, 1983;
- 2. Глазунов А.Т. Техника в курсе физики средней школы. М: Просвещение, 1977;
- 3. Зильберман А.Р. Задачи для физиков. М.: Знание, 1971;
- 4. *Каменецкий С.Е.* Методика решения задач по физике в средней школе. М.: Просвещение, 1987;
- 5. *Кабардин О.Ф.* Методика факультативных занятий по физике. М.: Просвещение, 1988;
- 6. Тульчинский М.Е. Качественные задачи по физике. М.: Просвещение, 1972;
- 7. *Тульчинский М.Е.* Занимательные задачи-парадоксы и софизмы по физике. М.: Просвещение, 1971;
- 8. Фридман Л.М. Как научиться решать задачи. М.: Просвещение, 1984.

Литература для учащихся:

- 1. Бутиков Б.И. Физика в задачах. М.: Просвещение, 1976;
- 2. Гольдфарб И.И. Сборник вопросов и задач по физике. М.: Высшая школа, 1973;
- 3. Ланге В.Н. Экспериментальные физические задачи на смекалку. М.: Наука, 1985;
- 4. *Низамов И.М.* Задачи по физике с техническим содержанием. М.: Просвещение, 1980:
- 5. *Пинский А.А.* Задачи по физике. М.: Наука, 1977;
- 6. Слободецкий И.Ш. Задачи по физике. М.: Наука, 1980.